Body Burden 2,3,7,8-TCDD and Human Common Viruses: Chemico-Biological Interactions Associated with Malignancies in Arctic Residents

*Tsyrlov IB, **Pokrovsky AG, ***Konenkov VI

*Xenotox Inc, Scarsdale, USA <u>xenotoxit@optonline.net</u>

**Novosibirsk State University, Russia

***Russian Academy of Medical Sciences, Siberian Branch

Human viruses associated with infections in the Arctic

(all infect cells and establish latent infections)

Hepatitis B virus

Epstein-Barr virus

Papillomavirus

Cytomegalovirus

Virus-associated cancers in the Arctic

- ✓ According to the US CDC, the rate of hepatitis B lesions has been high among Alaska Natives, and the annual incidence of hepatocellular carcinoma (HCC) among Eskimo males was five times that of white males in the United States. [McMahon et al., Hepatology 2000]. Among 1,400 Alaska Native the Hepatitis B virus (HBV) carriers, the relative risk factor of developing HCC was 148 compared to the general population [McMahon et al. Ann Intern Med 2001]
- ✓ Nasopharyngeal carcinoma encounters exclusively among Eskimos and other Arctic natives. The Epstein-Barr virus (EBV) DNA was detected in plasma/serum of 60% patients with this tumor [Shotelersuk et al., Clin Cancer Res 2000; McDermott et al., Clin Otolaryngol Allied Sci 2001]
- ✓ Undifferentiated salivary gland lymphoepithelial carcinomas are endemic in the Arctic regions. All cases of these tumors are associated with the EBV [Herbst et al., *Pathologe* 2004]
- ✓ The papillomavirus-associated invasive cervical carcinoma is the second leading cause of death in Canadian Inuit women, and the incidence ratio in this population is 3.1 times the Canadian average [Martin et al., Int J Circum Health 1998]

Molecular mechanism of TCDD action on DRE-containing mammalian genes

Airborne Long Range Transport

Highest risks for top predators

Dioxins are soluble in lipids. Marine food chain: rich in lipids

Dioxins in the Arctic diet

- ✓ The importance of diet on exposure and health effects of dioxin-like compounds in the Arctic has been recently reviewed [Odland et al., *Acta Paediatr* 2003]
- The mean total body burden (concentration of dioxin-like compounds expressed in 2,3,7,8-TCDD toxic equivalents) in Inuit people of Arctic Quebec is 7 times of that in people of South Quebec, whereas among fishermen it might reach 25 times of controls. However, "although the body burden of dioxin-like compounds are close to those induced adverse effects in laboratory animals, dietary benefits from sea-food based diet outweigh the hypothetical health risks" [Dewailly et al., Envir Health Perspect 1994; Ayotte et al., Chemosphere 1997]

- □ 2,3,7,8-Tetrachlorodibenzo-p-dioxin as a possible activator of HIV infection
 - A.G. Pokrovsky, A.I Chernykh, O.N. Yastrebova, and I.B. Tsyrlov *Biochem. Biophys. Res. Commun.* 179:46-51, 1991
- ☐ Stimulatory effect of the CYP1A1 inducer 2,3,7,8tetrachlorodibenzo-p-dioxin on the reproduction of HIV-1 in human lymphoid cell culture
 - I.B. Tsyrlov and A.G. Pokrovsky. Xenobiotica 23:457-467, 1993
- ☐ Activating effects of dioxin on HIV-1 in human CD4+ lymphoid cells
 - I.B. Tsyrlov and A.G. Pokrovsky. *Proceed.* 10th Intern. Conf. AIDS (Yokohama, Japan) 10:127, 1994

A nanomolar TCDD activates reproduction of HIV-1

Data on HIV RT and HIV antigen:

Data on HIV-LTR-CAT:

Pokrovsky et al., *BBRC* 1991; Tsyrlov & Pokrovsky, *Xenobiotica* 1993 Gollapudi et al., *BBRC* 1996; Ohata et al., *Microbiol. Immunol.* 2003 Yao et al., *Environ. Health Perspect.* 1995;

Gollapudi et al., BBRC 1996

Organism summary of the dioxin response element (DRE) core sequence (5'-GCGTG-3') found in viral promoters in the Eukaryotic Promoter Database [from T. Zacharewski, 2002]

Species	# DREs Located	# Promoters Represented
Adenovirus Human adenovirus type 12	10	4
Human adenovirus type 2	36	9
Human adenovirus type 5	19	5
Human adenovirus type 7	12	5
Simian adenovirus (7P)	3	1
Epstein-Barr virus Human herpesvirus 4	154	22
Hepadnavirus Duck hepatitis B virus	6	2
Human hepatitis B virus	4	4
Herpes virus Human cytomegalovirus	102	10
Human herpes simplex virus type 1	345	30
Human herpes simplex virus type 2	38	8
Murine cytomegalovirus	1	1
Bovine papillomavirus type 1	15	6
Human Papillomavirus type 16	3	1
Human Papillomavirus type 18	9	2
Papovavirus Mouse polyoma virus	1	1
Simian virus 40	5	3
Parvovirus (Murine) parvovirus H1	4	2
Adeno-associated virus 2	9	3
Lentivirus Oncovirus. Human immunodeficiency virus type 1	1	1
Human immunodeficiency virus type 2	2	1
Simian AIDS retrovirus SRV-1	3	1
Mammalian Oncovirus (Avian) Rous sarcoma virus	7	1
Bovine leukemia virus	1	1
Gibbon ape leukemia virus	1	1
Human T-cell leukemia virus type I	4	1

Molecular mechanism of TCDD action on viral DRE-containing genes ("Other Genes")

A picomolar TCDD activates replication of human cytomegalovirus (CMV)

(From: Murayama et al., *BBRC* 296:651-656, 2002)

- About 4-fold enhancing effect on CMV production was observed in MRC-5 cells treated with 0.0001 pg TCDD/ml (0.3 pM TCDD)
- Enhancement of the CMV DNA replication was determined with at least 0.01 pg TCDD/ml (30.0 pM TCDD)
- CMV-infected cells expressed transcripts of the AhR and AhR nuclear translocator. The anti-AhR antibody reduced TCDD-enhanced CMV replication to un-stimulated levels

Cancer-associated human viruses having multiple promoter DREs

(viruses related to malignancies in the Arctic are marked with ¶)

Virus name	Promoter DREs (#)	TCDD/**(AhR	Virally derived cancers
Cytomegalovirus	10	0.3 pM/**	Colon adenocarcinoma Colorectal polyps Congenital cancer Breast cancer in women < 40 yr
Epstein-Barr virus	22	?/**	Non-Hodgkin's Lymphomas,
Sarcomas			Nasopharengeal sarcoma Burkett's lymphoma
Herpes simplex viru	us		
type 1	30	?/?	
type 2	8	?/?	Cervical Cancer?
Hepatitis B virus	4	?/**	Hepatocellular

Cancer-associated human viruses possessing a single promoter DRE

(the HPV related to malignancies in the Arctic is marked with ¶)

Virus name	Promoter DREs (#)		Virally derived cancers
HIV type-1	1	0.1-1.0 nM/**	Various malignancies in the context of HIV-1 infection
Papillomav	irus		
type 16		/**	Invasive cervical cancer
			Skin cancer
			Oral & laryngeal cancers
			Anal cancer
T-lymphotro	pic		
virus type 1	1	/**	Adult T-cell leukemia (ATL)

The AhR as a treatment target of virus-associated human cancers with bioflavonoids or indole-3-carbinol

Viral DRE as a potential target for the treatment of virusassociated human malignancies with salycilamide

Molecular mechanism of TCDD action

Molecular and Cellular Biology 24:1799–1808, 2004

Enhancer I Predominance in Hepatitis B Virus Gene Expression

Gilad Doitsh and Yosef Shaul*

Studies of human hepatitis B virus (HBV) transcription revealed the requirement of two enhancer elements. Enhancer I (EnhI) is located upstream of the X promoter and is targeted by multiple activators, including basic leucine zipper proteins.

The data provides strong evidence for the role of EnhI in regulating global and temporal HBV gene expression.

General model of eukaryotic viral replication

Virus-associated cancers in the Arctic

- ✓ According to the US CDC, the rate of hepatitis B lesions has been high among Alaska Natives, and the annual incidence of hepatocellular carcinoma (HCC) among Eskimo males was five times that of white males in the United States. [McMahon et al., Hepatology 2000]. Among 1,400 Alaska Native the Hepatitis B virus (HBV) carriers, the relative risk factor of developing HCC was 148 compared to the general population [McMahon et al. Ann Intern Med 2001]
- ✓ Undifferentiated salivary gland lymphoepithelial carcinomas are endemic in the Arctic regions. All cases of these tumors are associated with Epstein-Barr virus (EBV) [Herbst et al., *Pathologe* 2004]
- ✓ Nasopharyngeal carcinoma encounters exclusively among Eskimos and other Arctic natives. The EBV DNA was detected in plasma/serum of 60% patients with this tumor [Shotelersuk et al., Clin Cancer Res 2000; McDermott et al., Clin Otolaryngol Allied Sci 2001]
- ✓ The papillomavirus-associated invasive cervical carcinoma is the second leading cause of cancer in Canadian Inuit women, and the incidence ratio in this population is 3.1 times the Canadian average [Martin et al., Int J Circum Health 1998]

Dioxin-like compounds in the Arctic

- ✓ The importance of diet on exposure and health effects of dioxin-like compounds in the Arctic has been recently reviewed [Odland et al., Acta Paediatr 2003]
- ✓ A high level of these compounds are reported among Arctic top predators [Pusch et al., *J Environ Monit* 2005]
- ✓ The mean total body burden (concentration of dioxin-like compounds expressed in 2,3,7,8-TCDD toxic equivalents) in Inuit people of Arctic Quebec is 7 times of that in people of South Quebec, whereas among fishermen it might reach 25 times of controls. However, "although the body burden of dioxin-like compounds are close to those induced adverse effects in laboratory animals, dietary benefits from sea-food based diet outweigh the hypothetical health risks" [Dewailly et al., Environ Health Perspect 1994; Ayotte et al., Chemosphere 1997]

Human viral infections in the Arctic

Hepatitis B virus

Epstein-Barr virus

Papillomavirus

Cytomegalovirus

Color-enhanced transmission electron microscopy (magnification 27,000x) of negatively stained human papillomavirus, isolated from common warts.

Cytomegalovirus infected cells

Immunofluorescent light micrograph of human cells infected with cytomegaloviruses. The infected cells are shown by the presence of the virus-specific protein UL37 (orange). Cell nuclei are blue, with mitochondria red.

Burkitt's lymphoma cancer

Numerous large, pale macrophages are present, and the small cancerous cells have numerous dark nucleoli within them. This cancer is caused by infection with the Epstein-Barr virus.

Effect of EBV-encoded EBNA-3

Organism summary of the dioxin response element (DRE) core sequence 5'-GCGTG-3' found in viral promoters in the Eukaryotic Promoter Database [from T. Zacharewski, 2002]

Species	# DREs Located	# Promoters Represented
Adenovirus Human adenovirus type 12	10	4
Human adenovirus type 2	36	9
Human adenovirus type 5	19	5
Human adenovirus type 7	12	5
Simian adenovirus (7P)	3	1
Epstein-Barr virus Human herpesvirus 4	154	22
Hepadnavirus Duck hepatitis B virus	6	2
Human hepatitis B virus	4	4
Herpes virus Human cytomegalovirus	102	10
Human herpes simplex virus type 1	345	30
Human herpes simplex virus type 2	38	8
Murine cytomegalovirus	1	1
Bovine papillomavirus type 1	15	6
Human Papillomavirus type 16	3	1
Human Papillomavirus type 18	9	2
Papovavirus Mouse polyoma virus	1	1
Simian virus 40	5	3
Parvovirus (Murine) parvovirus H1	4	2
Adeno-associated virus 2	9	3
Lentivirus Oncovirus Human immunodeficiency virus type 1	1	1
Human immunodeficiency virus type 2	2	1
Simian AIDS retrovirus SRV-1	3	1
Mammalian Oncovirus (Avian) Rous sarcoma virus	7	1
Bovine leukemia virus	1	1
Gibbon ape leukemia virus	1	1
Human T-cell leukemia virus type I	4	1

Organism summary of the dioxin response element (DRE) core sequence 5'-GCGTG-3' found in viral promoters in the Eukaryotic Promoter Database [from T. Zacharewski, 2002]

Species	# DREs Located	# Promoters Represented
Adenovirus Human adenovirus type 12	10	4
Human adenovirus type 2	36	9
Human adenovirus type 5	19	5
Human adenovirus type 7	12	5
Simian adenovirus (7P)	3	1
Epstein-Barr virus Human herpesvirus 4	154	22
Hepadnavirus Duck hepatitis B virus	6	2
Human hepatitis B virus	4	4
Herpes virus Human cytomegalovirus	102	10
Human herpes simplex virus type 1	345	30
Human herpes simplex virus type 2	38	8
Murine cytomegalovirus	1	1
Bovine papillomavirus type 1	15	6
Human Papillomavirus type 16	3	1
Human Papillomavirus type 18	9	2
Papovavirus Mouse polyoma virus	1	1
Simian virus 40	5	3
Parvovirus (Murine) parvovirus H1	4	2
Adeno-associated virus 2	9	3
Lentivirus Oncovirus Human immunodeficiency virus type 1	1	1
Human immunodeficiency virus type 2	2	1
Simian AIDS retrovirus SRV-1	3	1
Mammalian Oncovirus (Avian) Rous sarcoma virus	7	1
Bovine leukemia virus	1	1
Gibbon ape leukemia virus	1	1
Human T-cell leukemia virus type I	4	1

Organism summary of the dioxin response element (DRE) core sequence 5'-GCGTG-3' found in viral promoters in the Eukaryotic Promoter Database [from T. Zacharewski, 2002]

Species	# DREs Located	# Promoters Represented	
Adenovirus Human adenovirus type 12	10	4	
Human adenovirus type 2	36	9	
Human adenovirus type 5	19	5	
Human adenovirus type 7	12	5	
Simian adenovirus (7P)	3	1	
Epstein-Barr virus Human herpesvirus 4	154	22	
Hepadnavirus Duck hepatitis B virus	6	2	
Human hepatitis B virus	4	4	
Herpes virus Human cytomegalovirus	102	10	
Human herpes simplex virus type 1	345	30	
Human herpes simplex virus type 2	38	8	
Murine cytomegalovirus	1	1	
Papilloma virus Bovine papillomavirus type 1	15	6	
Human Papillomavirus type 16	3	1	
Human Papillomavirus type 18	9	2	
Papovavirus Mouse polyoma virus	1	1	
Simian virus 40	5	3	
Parvovirus (Murine) parvovirus H1	4	2	
Adeno-associated virus 2	9	3	
Lentivirus Oncovirus Human immunodeficiency virus type 1	1	1	
Human immunodeficiency virus type 2	2	1	
Simian AIDS retrovirus SRV-1	3	1	
Mammalian Oncovirus (Avian) Rous sarcoma virus	7	1	
Bovine leukemia virus	1	1	
Gibbon ape leukemia virus	1	1	
Human T-cell leukemia virus type I	4	1	

Probability of Developing Invasive Cancers Within Selected Age Intervals (in %, US, 2000-2002)

		Birth to 39	40 to 59	60 to 69	70 and older	Birth to Death
All sites	Male	1.43	8.57	16.46	39.61	45.67
	Female	1.99	9.06	10.54	26.72	38.09
Colon & rectum	Male	0.07	0.90	1.66	4.94	5.84
	Female	0.06	0.70	1.16	4.61	5.51
Non-Hodgkin	Male	0.14	0.47	0.56	1.57	2.18
lymphoma	Female	0.09	0.31	0.42	1.29	1.82
Uterine cervix	Female	0.15	0.28	0.15	0.22	0.74

Nearly All Vertebrate Animals Examined Respond to Dioxins

What about People?

- People have the Ah Receptor and the other members of its signaling complex.
- Subtle effects have been detected in the General Population.
- Adverse effects have been seen in highly exposed populations.

THE REAL QUESTION IS NOT CAN PEOPLE RESPOND TO DIOXINS, BUT AT WHAT DOSES THEY RESPOND!

Genomic structure of human papillomavirus

Genome maps of human tumor viruses

Trends in Body Levels of Dioxins

Mechanism of TCDD Action

A nanomolar TCDD activates reproduction of HIV-1

Data on HIV RT and HIV antigen:

Data on HIV-LTR-CAT:

Pokrovsky et al., *BBRC* 1991; Tsyrlov & Pokrovsky, *Xenobiotica* 1993 Gollapudi et al., *BBRC* 1996; Ohata et al., *Microbiol. Immunol.* 2003 Yao et al., *Environ. Health Perspect.* 1995;

Gollapudi et al., BBRC 1996

Viral Replication Cycle

Enhancer I Predominance in Hepatitis B Virus Gene Expression

Gilad Doitsh and Yosef Shaul* Molecular and Cellular Biology 24:1799–1808, 2004

Studies of human hepatitis B virus (HBV) transcription revealed the requirement of two enhancer elements. Enhancer I is located upstream of the X promoter and is targeted by multiple activators, including basic leucine zipper proteins. The data provides strong evidence for the role of Enhancer I in regulating HBV gene expression.

Mechanism of TCDD Action

RESEARCH & DEVELOPMENT

Building a scientific foundation for sound environmental decisions

